Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Stem Cell Res ; 73: 103258, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38029555

RESUMO

Central core disease (CCD) is a congenital disorder that results in hypotonia, delayed motor development, and areas of reduced oxidative activity in the muscle fibre. Two induced pluripotent stem cell (iPSC) lines were generated from the lymphoblastoid cells of a 33-year-old male with CCD, caused by a previously unreported dominant c.14145_14156delCTACTGGGACA (p.Asn4715_Asp4718del) deletion in the RYR1 gene. Both lines demonstrated typical morphology, pluripotency, trilineage differentiation, and had a normal karyotype. As the first published iPSC model of CCD caused by an RYR1 variant these lines are a potential resource for further investigation of RYR1-related myopathies in a human context.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miopatia da Parte Central , Masculino , Humanos , Adulto , Miopatia da Parte Central/genética , Miopatia da Parte Central/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Mutação
2.
Am J Med Genet A ; 191(6): 1646-1651, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36965156

RESUMO

Ryanodine receptor type 1-related disorder (RYR1-RD) is the most common subgroup of congenital myopathies with a wide phenotypic spectrum ranging from mild hypotonia to lethal fetal akinesia. Genetic testing for myopathies is imperative as the diagnosis informs counseling regarding prognosis and recurrence risk, treatment options, monitoring, and clinical management. However, diagnostic challenges exist as current options are limited to clinical suspicion prompting testing including: single gene sequencing or familial variant testing, multi-gene panels, exome, genome sequencing, and invasive testing including muscle biopsy. The timing of diagnosis is of great importance due to the association of RYR1-RD with malignant hyperthermia (MH). MH is a hypermetabolic crisis that occurs secondary to excessive calcium release in muscles, leading to systemic effects that can progress to shock and death if unrecognized. Given the association of MH with pathogenic variants in RYR1, a diagnosis of RYR1-RD necessitates an awareness of medical team to avoid potentially triggering agents. We describe a case of a unique fetal presentation with bilateral diaphragmatic eventrations who had respiratory failure, dysmorphic facial features, and profound global hypotonia in the neonatal period. The diagnosis was made at several months of age, had direct implications on her clinical care related to anticipated need to long-term ventilator support, and ultimately death secondary an arrhythmia as a result of suspected MH. Our report reinforces the importance of having high suspicion for a genetic syndrome and pursuing early, rapid exome or genome sequencing as first line testing in critically ill neonatal intensive care unit patients and further evaluating the pathogenicity of a variant of uncertain significance in the setting of a myopathic phenotype.


Assuntos
Hipertermia Maligna , Miopatia da Parte Central , Feminino , Humanos , Gravidez , Miopatia da Parte Central/diagnóstico , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Hipotonia Muscular , Mapeamento Cromossômico , Apresentação no Trabalho de Parto , Hipertermia Maligna/diagnóstico , Hipertermia Maligna/genética , Mutação
3.
Proc Natl Acad Sci U S A ; 119(30): e2122140119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867837

RESUMO

Ryanodine receptors (RyRs) are main regulators of intracellular Ca2+ release and muscle contraction. The Y522S mutation of RyR1 causes central core disease, a weakening myopathy, and malignant hyperthermia, a sudden and potentially fatal response to anesthetics or heat. Y522 is in the core of the N-terminal subdomain C of RyR1 and the mechanism of how this mutation orchestrates malfunction is unpredictable for this 2-MDa ion channel, which has four identical subunits composed of 15 distinct cytoplasmic domains each. We expressed and purified the RyR1 rabbit homolog, Y523S, from HEK293 cells and reconstituted it in nanodiscs under closed and open states. The high-resolution cryogenic electron microscopic (cryo-EM) three-dimensional (3D) structures show that the phenyl ring of Tyr functions in a manner analogous to a "spacer" within an α-helical bundle. Mutation to the much smaller Ser alters the hydrophobic network within the bundle, triggering rearrangement of its α-helices with repercussions in the orientation of most cytoplasmic domains. Examining the mutation-induced readjustments exposed a series of connected α-helices acting as an ∼100 Å-long lever: One end protrudes toward the dihydropyridine receptor, its molecular activator (akin to an antenna), while the other end reaches the Ca2+ activation site. The Y523S mutation elicits channel preactivation in the absence of any activator and full opening at 1.5 µM free Ca2+, increasing by ∼20-fold the potency of Ca2+ to activate the channel compared with RyR1 wild type (WT). This study identified a preactivated pathological state of RyR1 and a long-range lever that may work as a molecular switch to open the channel.


Assuntos
Hipertermia Maligna , Músculo Esquelético , Miopatia da Parte Central , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Hipertermia Maligna/genética , Músculo Esquelético/metabolismo , Mutação , Miopatia da Parte Central/genética , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
4.
Genes (Basel) ; 13(5)2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35627144

RESUMO

Central Core Disease (CCD) is a genetic neuromuscular disorder characterized by the presence of cores in muscle biopsy. The inheritance has been described as predominantly autosomal dominant (AD), and the disease may present as severe neonatal or mild adult forms. Here we report clinical and molecular data on a large cohort of Brazilian CCD patients, including a retrospective clinical analysis and molecular screening for RYR1 variants using Next-Generation Sequencing (NGS). We analyzed 27 patients from 19 unrelated families: four families (11 patients) with autosomal dominant inheritance (AD), two families (3 patients) with autosomal recessive (AR), and 13 sporadic cases. Biallelic RYR1 variants were found in six families (two AR and four sporadic cases) of the 14 molecularly analyzed families (~43%), suggesting a higher frequency of AR inheritance than expected. None of these cases presented a severe phenotype. Facial weakness was more common in biallelic than in monoallelic patients (p = 0.0043) and might be a marker for AR forms. NGS is highly effective for the identification of RYR1 variants in CCD patients, allowing the discovery of a higher proportion of AR cases with biallelic mutations. These data have important implications for the genetic counseling of the families.


Assuntos
Miopatia da Parte Central , Neuroblastoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Linhagem , Estudos Retrospectivos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
5.
Acta Neuropathol Commun ; 10(1): 54, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428369

RESUMO

Mutations in the RYR1 gene, encoding ryanodine receptor 1 (RyR1), are a well-known cause of Central Core Disease (CCD) and Multi-minicore Disease (MmD). We screened a cohort of 153 patients carrying an histopathological diagnosis of core myopathy (cores and minicores) for RYR1 mutation. At least one RYR1 mutation was identified in 69 of them and these patients were further studied. Clinical and histopathological features were collected. Clinical phenotype was highly heterogeneous ranging from asymptomatic or paucisymptomatic hyperCKemia to severe muscle weakness and skeletal deformity with loss of ambulation. Sixty-eight RYR1 mutations, generally missense, were identified, of which 16 were novel. The combined analysis of the clinical presentation, disease progression and the structural bioinformatic analyses of RYR1 allowed to associate some phenotypes to mutations in specific domains. In addition, this study highlighted the structural bioinformatics potential in the prediction of the pathogenicity of RYR1 mutations. Further improvement in the comprehension of genotype-phenotype relationship of core myopathies can be expected in the next future: the actual lack of the human RyR1 crystal structure paired with the presence of large intrinsically disordered regions in RyR1, and the frequent presence of more than one RYR1 mutation in core myopathy patients, require designing novel investigation strategies to completely address RyR1 mutation effect.


Assuntos
Miopatias Congênitas Estruturais , Miopatia da Parte Central , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Músculo Esquelético/patologia , Mutação/genética , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
6.
Neuromuscul Disord ; 31(10): 968-977, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34627702

RESUMO

Core myopathies are clinically, pathologically, and genetically heterogeneous muscle diseases. Their onset and clinical severity are variable. Core myopathies are diagnosed by muscle biopsy showing focally reduced oxidative enzyme activity and can be pathologically divided into central core disease, multiminicore disease, dusty core disease, and core-rod myopathy. Although RYR1-related myopathy is the most common core myopathy, an increasing number of other causative genes have been reported, including SELENON, MYH2, MYH7, TTN, CCDC78, UNC45B, ACTN2, MEGF10, CFL2, KBTBD13, and TRIP4. Furthermore, the genes originally reported to cause nemaline myopathy, namely ACTA1, NEB, and TNNT1, have been recently associated with core-rod myopathy. Genetic analysis allows us to diagnose each core myopathy more accurately. In this review, we aim to provide up-to-date information about core myopathies.


Assuntos
Miopatia da Parte Central/genética , Biópsia , Humanos , Proteínas Musculares/genética , Músculo Esquelético/patologia , Mutação , Miopatias da Nemalina/genética , Miopatias Congênitas Estruturais/genética , Oftalmoplegia/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
7.
Pediatr Rheumatol Online J ; 19(1): 100, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193198

RESUMO

BACKGROUND: Dermatomyositis is an inflammatory muscle disease caused by immune-mediated muscle injury, and central core disease (CCD) is a congenital myopathy associated with disturbed intracellular calcium homeostasis and excitation-contraction coupling. To date, CCD has not been reported to have autoantibodies or coexist with inflammatory myopathy. CASE PRESENTATION: Here, we described the case of a 25-year-old woman who had progressive proximal muscle weakness, myalgia, pruritic macular rash, skin ulcers, and calcinosis. Dermatomyositis was initially suspected based on the clinical symptoms accompanied by elevated muscle enzyme levels, electromyography abnormalities, and a positive antinuclear antibody test. However, the patient's muscle biopsy revealed the characteristic findings of both dermatomyositis and CCD, suggesting that dermatomyositis occurred in this patient with previously asymptomatic CCD. The patient did not have any pathogenic gene mutations associated with congenital myopathy, including RYR1 and SEPN1 in targeted next-generation sequencing. She received high-dose glucocorticoid therapy and azathioprine with a significant improvement in muscle strength. CONCLUSIONS: We present a case of rare coexistence of dermatomyositis and CCD. Clinicians should be aware that patients with CCD may have inflammatory myopathy that responds well to immunosuppressive therapy.


Assuntos
Doenças Autoimunes/complicações , Dermatomiosite/etiologia , Miopatia da Parte Central/complicações , Adulto , Doenças Autoimunes/genética , Feminino , Humanos , Miopatia da Parte Central/genética
8.
Muscle Nerve ; 63(3): 304-310, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33146414

RESUMO

BACKGROUND: The diagnosis of uncommon pediatric neuromuscular disease (NMD) is challenging due to genetic and phenotypic heterogeneity, yet is important to guide treatment, prognosis, and recurrence risk. Patients with diagnostically challenging presentations typically undergo extensive testing with variable molecular diagnostic yield. Given the advancement in next generation sequencing (NGS), we investigated the value of clinical whole exome sequencing (ES) in uncommon pediatric NMD. METHODS: A retrospective cohort study of 106 pediatric NMD patients with a combination of ES, chromosomal microarray (CMA), and candidate gene testing was completed at a large tertiary referral center. RESULTS: A molecular diagnosis was achieved in 37/79 (46%) patients with ES, 4/44 (9%) patients with CMA, and 15/74 (20%) patients with candidate gene testing. In 2/79 (3%) patients, a dual molecular diagnosis explaining the neuromuscular disease process was identified. A total of 42 patients (53%) who received ES remained without a molecular diagnosis at the conclusion of the study. CONCLUSIONS: Due to NGS, molecular diagnostic yield of rare neurological diseases is at an all-time high. We show that ES has a higher diagnostic rate compared to other genetic tests in a complex pediatric neuromuscular disease cohort and should be considered early in the diagnostic journey for select NMD patients with challenging presentations in which a clinical diagnosis is not evident.


Assuntos
Sequenciamento do Exoma , Doenças Neuromusculares/diagnóstico , Adolescente , Biópsia , Criança , Pré-Escolar , Estudos de Coortes , Eletromiografia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Análise em Microsséries , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/patologia , Técnicas de Diagnóstico Molecular , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Distrofias Musculares/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Miopatia da Parte Central/diagnóstico , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Miosite/diagnóstico , Miosite/genética , Miosite/patologia , Condução Nervosa , Doenças Neuromusculares/genética , Doenças Neuromusculares/patologia , Estudos Retrospectivos , Análise de Sequência de DNA , Atrofias Musculares Espinais da Infância/diagnóstico , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/patologia , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
9.
Acta Neuropathol Commun ; 8(1): 192, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176865

RESUMO

Mutations in the RYR1 gene, encoding the skeletal muscle calcium channel RyR1, lead to congenital myopathies, through expression of a channel with abnormal permeability and/or in reduced amount, but the direct functional whole organism consequences of exclusive reduction in RyR1 amount have never been studied. We have developed and characterized a mouse model with inducible muscle specific RYR1 deletion. Tamoxifen-induced recombination in the RYR1 gene at adult age resulted in a progressive reduction in the protein amount reaching a stable level of 50% of the initial amount, and was associated with a progressive muscle weakness and atrophy. Measurement of calcium fluxes in isolated muscle fibers demonstrated a reduction in the amplitude of RyR1-related calcium release mirroring the reduction in the protein amount. Alterations in the muscle structure were observed, with fibers atrophy, abnormal mitochondria distribution and membrane remodeling. An increase in the expression level of many proteins was observed, as well as an inhibition of the autophagy process. This model demonstrates that RyR1 reduction is sufficient to recapitulate most features of Central Core Disease, and accordingly similar alterations were observed in muscle biopsies from Dusty Core Disease patients (a subtype of Central Core Disease), pointing to common pathophysiological mechanisms related to RyR1 reduction.


Assuntos
Debilidade Muscular/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Transgênicos , Mitocôndrias Musculares/patologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Miopatia da Parte Central/metabolismo , Miopatia da Parte Central/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
10.
J Neuropathol Exp Neurol ; 79(12): 1370-1375, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33184643

RESUMO

Typical central core disease (CCD) is characterized pathologically by the presence of a core and is accompanied by type 1 fiber uniformity. Congenital neuromuscular disease with uniform type 1 fiber (CNMDU1) is characterized pathologically by the presence of type 1 fiber uniformity but without the abnormal structural changes in muscle fibers. Interestingly, typical CCD and 40% of CNMDU1 cases are caused by the same mutations in RYR1, and thus CNMDU1 has been considered an early precursor to CCD. To better understand the nature of CNMDU1, we re-evaluated muscle biopsies from 16 patients with CNMDU1 using immunohistochemistry to RYR1, triadin and TOM20, and compared this to muscle biopsies from 36 typical CCD patients. In CCD, RYR1, and triadin were present in the core regions, while TOM20 was absent in the core regions. Interestingly, in 5 CNMDU1 cases with the RYR1 mutation, RYR1, and triadin were similarly present in core-like areas, while TOM20 was absent in the subsarcolemmal region. Furthermore, there was a correlation between the core position and the disease duration or progression-the older patients in more advanced stages had more centralized cores. Our results indicate that CNMDU1 due to RYR1 mutation is a de facto core myopathy.


Assuntos
Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Miopatia da Parte Central/patologia , Proteínas de Transporte/genética , Pré-Escolar , Humanos , Proteínas Musculares/genética , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
11.
Acta Myol ; 39(4): 266-273, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33458581

RESUMO

Congenital myopathies represent a clinically and genetically heterogeneous group of early-onset neuromuscular diseases with characteristic, but not always specific, histopathological features, often presenting with stable and/or slowly progressive truncal and proximal weakness. It is often not possible to have a diagnosis on clinical ground alone. Additional extraocular, respiratory, distal involvement, scoliosis, and distal laxity may provide clues. The "core myopathies" collectively represent the most common form of congenital myopathies, and the name pathologically corresponds to histochemical appearance of focally reduced oxidative enzyme activity and myofibrillar changes on ultrastructural studies. Because of the clinical, pathological, and molecular overlaps, central core disease and multiminicore disease will be discussed together.


Assuntos
Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/genética , Miopatia da Parte Central/diagnóstico , Miopatia da Parte Central/genética , Oftalmoplegia/diagnóstico , Oftalmoplegia/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Humanos , Miopatias Congênitas Estruturais/terapia , Miopatia da Parte Central/terapia , Oftalmoplegia/terapia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
12.
Acta Myol ; 39(4): 274-282, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33458582

RESUMO

Central Core Disease (CCD) is an inherited neuromuscular disorder characterized by the presence of cores in muscle biopsy. CCD is caused by mutations in the RYR1 gene. This gene encodes the ryanodine receptor 1, which is an intracellular calcium release channel from the sarcoplasmic reticulum to the cytosol in response to depolarization of the plasma membrane. Mutations in this gene are also associated with susceptibility to Malignant Hyperthermia (MHS). In this study, we evaluated 20 families with clinical and histological characteristics of CCD to identify primary mutations in patients, for diagnosis and genetic counseling of the families. We identified variants in the RYR1 gene in 19/20 families. The molecular pathogenicity was confirmed in 16 of them. Most of these variants (22/23) are missense and unique in the families. Two variants were recurrent in two different families. We identified six families with biallelic mutations, five compound heterozygotes with no consanguinity, and one homozygous, with consanguineous parents, resulting in 30% of cases with possible autosomal recessive inheritance. We identified seven novel variants, four of them classified as pathogenic. In one family, we identified two mutations in exon 102, segregating in cis, suggesting an additive effect of two mutations in the same allele. This work highlights the importance of using Next-Generation Sequencing technology for the molecular diagnosis of genetic diseases when a very large gene is involved, associated to a broad distribution of the mutations along it. These data also influence the prevention through adequate genetic counseling for the families and cautions against malignant hyperthermia susceptibility.


Assuntos
Padrões de Herança/genética , Mutação/genética , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adulto , Brasil , Criança , Pré-Escolar , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Masculino
13.
Biomed Res Int ; 2019: 7638946, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165076

RESUMO

The skeletal muscle ryanodine receptor (RyR1), i.e., the Ca2+ channel of the sarco/endoplasmic reticulum (S/ER), and the voltage-dependent calcium channel Cav1.1 are the principal channels involved in excitation-contraction coupling in skeletal muscle. RYR1 gene variants are linked to distinct skeletal muscle disorders, including malignant hyperthermia susceptibility and central core disease (CCD), mainly with autosomal dominant inheritance, and autosomal recessive myopathies with a broad phenotypic and histopathological spectrum. The age at onset of RYR1-related myopathies varies from infancy to adulthood. We report the identification of four RYR1 variants in two Italian families: one with myopathy and variants c.4003C>T (p.R1335C) and c.7035C>A (p.S2345R), and another with CCD and variants c.9293G>T (p.S3098I) and c.14771_14772insTAGACAGGGTGTTGCTCTGTTGCCCTTCTT (p.F4924_V4925insRQGVALLPFF). We demonstrate that, in patient-specific lymphoblastoid cells, the c.4003C>T (p.R1335C) variant is not expressed and the in-frame 30-nucleotide insertion variant is expressed at a low level. Moreover, Ca2+ release in response to the RyR1 agonist 4-chloro-m-cresol and to thapsigargin showed that the c.7035C>A (p.S2345R) variant causes depletion of S/ER Ca2+ stores and that the compound heterozygosity for variant c.9293G>T (p.S3098I) and the 30-nucleotide insertion increases RyR1-dependent Ca2+ release without affecting ER Ca2+ stores. In conclusion, we detected and functionally characterized disease-causing variants of the RyR1 channel in patient-specific lymphoblastoid cells. This paper is dedicated to the memory and contribution of Luigi Del Vecchio.


Assuntos
Família , Regulação da Expressão Gênica , Variação Genética , Hipertermia Maligna , Músculo Esquelético , Miopatia da Parte Central , Canal de Liberação de Cálcio do Receptor de Rianodina , Adulto , Pré-Escolar , Feminino , Humanos , Itália , Masculino , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Hipertermia Maligna/patologia , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miopatia da Parte Central/genética , Miopatia da Parte Central/metabolismo , Miopatia da Parte Central/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/biossíntese , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
14.
Muscle Nerve ; 60(1): 80-87, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004442

RESUMO

INTRODUCTION: The objective of this study was to obtain a 6-month natural history of motor function performance in individuals with RYR1- related myopathy (RYR1-RM) by using the Motor Function Measure-32 (MFM-32) and graded functional tests (GFT) while facilitating preparation for interventional trials. METHODS: In total, 34 participants completed the MFM-32 and GFTs at baseline and 6-month visits. RESULTS: Motor deficits according to MFM-32 were primarily observed in the standing and transfers domain (D1; mean 71%). Among the GFTs, participants required the most time to ascend/descend stairs (>7.5 s). Functional movement, determined by GFT grades, was strongly correlated with MFM-32 (D1; r ≥ 0.770, P < 0.001). Motor Function Measure-32 and GFT scores did not reflect any change in performance between baseline and 6-month visits. DISCUSSION: The MFM-32 and GFTs detected motor impairment in RYR1-RM, which remained stable over 6 months. Thus, these measures may be suitable for assessing change in motor function in response to therapeutic intervention. Muscle Nerve 60: 80-87, 2019.


Assuntos
Movimento/fisiologia , Miopatias Congênitas Estruturais/fisiopatologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adolescente , Adulto , Criança , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miopatias Congênitas Estruturais/genética , Miopatia da Parte Central/genética , Miopatia da Parte Central/fisiopatologia , Oftalmoplegia/genética , Oftalmoplegia/fisiopatologia , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Adulto Jovem
15.
Muscle Nerve ; 58(2): 235-244, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29669168

RESUMO

INTRODUCTION: Congenital myopathies are muscle diseases characterized by specific histopathologic features, generalized hypotonia from birth, and perinatal complications, although some cases develop during childhood or, rarely, in adulthood. We undertook this study to characterize congenital myopathies among patients registered at our institution. METHODS: Clinical, histopathologic, and genetic features were evaluated in 34 patients recruited for this study. RESULTS: The majority of patients experienced a childhood onset, and no disease-related mortality was recorded during follow-up. Functional outcomes were no better for those with late-onset disease, indicating later disease progression can be significant. Nemaline myopathy was the most frequent pathology, followed by central core disease and centronuclear myopathy. Among the 18 (54.5%) genetically confirmed patients, NEB and RYR1 mutations were the most common, followed by DNM2 mutations. DISCUSSION: This study shows features not previously reported and suggests that congenital myopathy should be considered an important issue among adult patients. Muscle Nerve 58: 235-244, 2018.


Assuntos
Miotonia Congênita/patologia , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Dinamina II , Dinaminas/genética , Feminino , Humanos , Lactente , Masculino , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Mutação , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Miopatias Congênitas Estruturais/congênito , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Miopatia da Parte Central/congênito , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Miotonia Congênita/genética , República da Coreia , Estudos Retrospectivos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Resultado do Tratamento , Adulto Jovem
16.
Neuromuscul Disord ; 28(5): 422-426, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576327

RESUMO

Myopathies due to mutations in the skeletal muscle ryanodine receptor (RYR1) gene are amongst the most common non-dystrophic neuromuscular disorders and have been associated with both dominant and recessive inheritance. Several cases with apparently de novo dominant inheritance have been reported. Here we report two siblings with features of Central Core Disease (CCD) born to unaffected parents. Genetic testing revealed a heterozygous dominant RYR1 c.14582G>A (p. Arg4861His) mutation previously identified in other CCD pedigrees. The variant was absent in blood from the asymptomatic mother but detected at low but variable levels in blood- and saliva-derived DNA from the unaffected father, suggesting that this mutation has arisen as a paternal post-zygotic de novo event. These findings suggest that parental mosaicism should be considered in RYR1-related myopathies, and may provide one possible explanation for the marked intergenerational variability seen in some RYR1 pedigrees.


Assuntos
Mosaicismo , Músculo Esquelético/patologia , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Criança , Pré-Escolar , Feminino , Testes Genéticos , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagem , Miopatia da Parte Central/diagnóstico por imagem , Miopatia da Parte Central/patologia , Pais , Irmãos , Ultrassonografia
18.
Oxid Med Cell Longev ; 2017: 6792694, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29062463

RESUMO

Central core disease (CCD) is a congenital myopathy linked to mutations in the ryanodine receptor type 1 (RYR1), the sarcoplasmic reticulum Ca2+ release channel of skeletal muscle. CCD is characterized by formation of amorphous cores within muscle fibers, lacking mitochondrial activity. In skeletal muscle of RYR1Y522S/WT knock-in mice, carrying a human mutation in RYR1 linked to malignant hyperthermia (MH) with cores, oxidative stress is elevated and fibers present severe mitochondrial damage and cores. We treated RYR1Y522S/WT mice with N-acetylcysteine (NAC), an antioxidant provided ad libitum in drinking water for either 2 or 6 months. Our results show that 2 months of NAC treatment starting at 2 months of age, when mitochondrial and fiber damage was still minimal, (i) reduce formation of unstructured and contracture cores, (ii) improve muscle function, and (iii) decrease mitochondrial damage. The beneficial effect of NAC treatment is also evident following 6 months of treatment starting at 4 months of age, when structural damage was at an advanced stage. NAC exerts its protective effect likely by lowering oxidative stress, as supported by the reduction of 3-NT and SOD2 levels. This work suggests that NAC administration is beneficial to prevent mitochondrial damage and formation of cores and improve muscle function in RYR1Y522S/WT mice.


Assuntos
Antioxidantes/metabolismo , Músculo Esquelético/fisiologia , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Humanos , Camundongos , Miopatia da Parte Central/patologia
19.
Biochem J ; 474(16): 2749-2761, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687594

RESUMO

Mutations in the skeletal muscle ryanodine receptor (RyR1) cause malignant hyperthermia (MH) and central core disease (CCD), whereas mutations in the cardiac ryanodine receptor (RyR2) lead to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most disease-associated RyR1 and RyR2 mutations are located in the N-terminal, central, and C-terminal regions of the corresponding ryanodine receptor (RyR) isoform. An increasing body of evidence demonstrates that CPVT-associated RyR2 mutations enhance the propensity for spontaneous Ca2+ release during store Ca2+ overload, a process known as store overload-induced Ca2+ release (SOICR). Considering the similar locations of disease-associated RyR1 and RyR2 mutations in the RyR structure, we hypothesize that like CPVT-associated RyR2 mutations, MH/CCD-associated RyR1 mutations also enhance SOICR. To test this hypothesis, we determined the impact on SOICR of 12 MH/CCD-associated RyR1 mutations E2347-del, R2163H, G2434R, R2435L, R2435H, and R2454H located in the central region, and Y4796C, T4826I, L4838V, A4940T, G4943V, and P4973L located in the C-terminal region of the channel. We found that all these RyR1 mutations reduced the threshold for SOICR. Dantrolene, an acute treatment for MH, suppressed SOICR in HEK293 cells expressing the RyR1 mutants R164C, Y523S, R2136H, R2435H, and Y4796C. Interestingly, carvedilol, a commonly used ß-blocker that suppresses RyR2-mediated SOICR, also inhibits SOICR in these RyR1 mutant HEK293 cells. Therefore, these results indicate that a reduced SOICR threshold is a common defect of MH/CCD-associated RyR1 mutations, and that carvedilol, like dantrolene, can suppress RyR1-mediated SOICR. Clinical studies of the effectiveness of carvedilol as a long-term treatment for MH/CCD or other RyR1-associated disorders may be warranted.


Assuntos
Sinalização do Cálcio , Hipertermia Maligna/genética , Modelos Moleculares , Miopatia da Parte Central/genética , Mutação Puntual , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Antagonistas Adrenérgicos beta/farmacologia , Substituição de Aminoácidos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Carbazóis/farmacologia , Carvedilol , Dantroleno/farmacologia , Transferência Ressonante de Energia de Fluorescência , Predisposição Genética para Doença , Células HEK293 , Humanos , Hipertermia Maligna/tratamento farmacológico , Hipertermia Maligna/metabolismo , Microscopia de Fluorescência , Relaxantes Musculares Centrais/farmacologia , Mutagênese Sítio-Dirigida , Miopatia da Parte Central/metabolismo , Propanolaminas/farmacologia , Conformação Proteica , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Análise de Célula Única
20.
J Neuromuscul Dis ; 4(2): 147-158, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28527222

RESUMO

BACKGROUND: Central core disease and malignant hyperthermia are human disorders of skeletal muscle resulting from aberrant Ca2+ handling. Most malignant hyperthermia and central core disease cases are associated with amino acid changes in the type 1 ryanodine receptor (RyR1), the skeletal muscle Ca2+-release channel. Malignant hyperthermia exhibits a gain-of-function phenotype, and central core disease results from loss of channel function. For a variant to be classified as pathogenic, functional studies must demonstrate a correlation with the pathophysiology of malignant hyperthermia or central core disease. OBJECTIVE: We assessed the pathogenicity of four C-terminal variants of the ryanodine receptor using functional analysis. The variants were identified in families affected by either malignant hyperthermia or central core disease. METHODS: Four variants were introduced separately into human cDNA encoding the skeletal muscle ryanodine receptor. Following transient expression in HEK-293T cells, functional studies were carried out using calcium release assays in response to an agonist. Two previously characterized variants and wild-type skeletal muscle ryanodine receptor were used as controls. RESULTS: The p.Met4640Ile variant associated with central core disease showed no difference in calcium release compared to wild-type. The p.Val4849Ile variant associated with malignant hyperthermia was more sensitive to agonist than wild-type but did not reach statistical significance and two variants (p.Phe4857Ser and p.Asp4918Asn) associated with central core disease were completely inactive. CONCLUSIONS: The p.Val4849Ile variant should be considered a risk factor for malignant hyperthermia, while the p.Phe4857Ser and p.Asp4918Asn variants should be classified as pathogenic for central core disease.


Assuntos
Variação Genética , Hipertermia Maligna/genética , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Adulto , Idoso , Cálcio/metabolismo , Família , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Masculino , Hipertermia Maligna/metabolismo , Hipertermia Maligna/terapia , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Miopatia da Parte Central/metabolismo , Miopatia da Parte Central/terapia , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...